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ABSTRACT

The reaction operator formulation for the exact solution of the

Schredinger equation is used with a truncated basis set to obtain

approximate solutions. The relationship between this truncated reaction

operator formalism and the Rayleigh-Ritz variational method is emphasized

and shown explicitly. The truncated reaction operator and its matrix

elements are discussed in general; computed and discussed for a simple

example, the helium atom, using a three membered basis set. It is

shown that the reaction operator can be replaced by a function which we

call the "effective" perturbation. This function has very fundamental

significance and may lend itself to accurate empiricism. Expressions

are given comparing the "effective" perturbation with the perturbation

and approximations to this function for the helium atom are computed.
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TRUNCATED REACTION OPERATORS

1. Introduction

Watson , Brueckner and Levinson2 , Lbwdin 3 and others4 have derived

the reaction operator formulation for the exact solution of the

Schrbdinger equation. This formulation can be used with a truncated

basis set to obtain approximate solutions of the Schrbdinger equation.

One of the purposes of our present discussion is to emphasize and show

explicitly, in the simplest possible manner, the relationship between

the approximate solutions obtained with a truncated reaction operator

formalism and the solutions obtained by the Rayleigh-Ritz variational

method. The approximate reaction operator and its matrix elements are

discussed in general and in connection with a simple example,, i.e. the

helium atom, using a three membered basis set.

The reaction operator can be replaced by a function, Vef f , which

we call the "effective" perturbation. It appears to us that this

function has very fundamental significance. Ultimately after we have

obtained a backlog of numerical and theoretical experience with the

determination of the "effective' potentials for atomic and molecular

problems, we may be able to accurately empiricize Veff ' thus obtaining

good values for the energy and other physical observables of these

systems.

First, consider that part of the reaction operator formulation

for the exact solution of the Schrbdinger equation pertinent to this

paper. We fix our attention on the effect of the perturbation V on

the q-th unperturbed state. The q-th state is considered to be non-

degenerate and is not necessarily the ground state. The Hamiltonian

for the unperturbed system is H and
0

K. M. Watson, Phys. Rev. 89, 575 (1953).

2 K. A. Brueckner and C. A. Levinson, Phys. Rev 97, 1344 (1955).

P. 0. Lbwdin, J. Math. Physo 3, 969 (1962).

A more complete list of references is given in K. Kumar, rIPerturba-
tion Theory and the Nuclear Many Body Problem" (North-Holland
Publishing Co., Amsterdam, 1962).
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Hok = E(°) k ( k=12'..o 1 ()

where and E(0) are the normalized eigenfunction and eigenvalue,
9k k

respectively, for the k-th unperturbed state. For the perturbed

system, the Hamiltonian H , is given by

H = H + V (2)0

The reaction or energy shift operator, t , is defined by

Eq E Eg0) + <*'wItI10 > (3)Iq q NIq I/

where E is the exact energy for the perturbed system. Let us defineq

two projection operators, 0 and P , such that

0 = rq (4)

and

P = 1 - 0 (5)

where X is a trial function. Using these definitions it can be

shown that the hermitian operator t , associated with V , H 0

and the state under consideration q ,is given by
3

t = +VT t (6)

where

T = P [0L.0 + P(Eq - H0 )P ] -I . (7)

Here 0X is an arbitrary number which insures the existence of the

inverse operator in Eq. (7).

The exact wave function for the perturbed state, *q I is given by3

*q = W 5q (8)
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where W is the wave operator associated with the q-th unperturbed

state;

W = I + T t (i/V)t (9)

Here

< Oqh~q> =l (10)

and hence the wave function, q J, has not been normalized to unity.

One may define an "effective" perturbation, Veff(q) , which

replaces the operator t in the above formulation;

Veff (q) = (tq)I q (11)

Clearly the exact energy and wave function for the perturbed system

may be written as

Eq = <TqIHo + Vff(q)[ (D (12)

and

*q = (Veff(q)/V) Tq (13)

In Secs. 2 and 3 Veff (q) is compared with the perturbation V . In

Sec. 4 approximations to V eff(q) for the helium atom are computed.

It is our hope that the function Veff(q) will lend itself to empiricism.

2. Truncated Reaction Operators and the Approximate Solution of the

SchrUdinger Equation

In this section we limit consideration to trial functions which

may be expanded in terms of a truncated basis set, f{k j of n

eigenfunctions of an H o For this choice of trial function t is0

equivalent to a truncated reaction operator, t(n) , which involves

only the set { ~k} (The use of an arbitrary truncated basis set,

fwkj , is discussed briefly in Sec. 3; but the treatment is more
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complicated.) The matrix elements of t(n) are obtained by an itera-

tive procedure) after which approximations to the energy,, E (n) , and
q

the normalized wave function, T (cn),can be easily calculated. Finally
q

an expression for the approximate "effective" perturbation, Veff(qn) ,

is obtained.

For the class of trial functions which are linear expansions in

the truncated set k the operator P is equivalent to

n

P(n) = ZI1 T,> /('kI (14)
k=l
k Pq

with 0 + P(n) = I . Using Eq. (14) we may write

T(n) = P(n)/(Eq(n) -Ho) (15)

where the inverse operator in Eq. (1.5) is well defined assuming E q(n)
(o)q

does not equal any of the eigenvalues E k Using Eqs. (1), (3), (6),

(14) and (15) we obtain

n

t(n) = V + VI O >K kIt(n) (16)

k~l (Eq(n)-EO

and

E (n) = E(o) + <WqIt(n)Io> o (17)

The approximate wave operator, W(n) , may be obtained from Eqs.

(9) and (16);

W(n) = (1/V)t(n) (18)

Using Eqso (8) and (18), the normalized approximate perturbed wave

function is given by
n

(n) = kq (n) (19)

knI
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where

Ckq(n) = Ntkq(n)/(nq(n) - E(°)) (20)

and n
- (21)**2

[t- mq n~ q rnm

Thus both Eq(n) and *4q(n) are easily obtained once the tkq(n)

are computed.

The matrix representation of t(n) , using Eq. (16), is

n

t (n) Vt(n)/ (E(0) + t (n) - () s=l,, ° ' n
sq = Vsktkq q qq k

k=l (22)

The system of equations given by Eq. (22) may be solved iteratively, A

guess is made for tqq (n) . Then the system of equations

n

tsq(n) = (n)I(E ()+ tqq(n)- Ek()) ( (23)

k=l
s=l,° ° ° q-Ijq+l,° ° ° n

is solved for the tkq(n)'s with k~q.o These tkq(n)'s are then

used in the expression

n

t (n) Vt(n)/(E(o) + t (n) -E k (24)
qq = qktkqn q qq k

k=l

to calculate a new value for tqq(n) . This procedure is repeated until

self consistency is obtained. From the final values for the tkq(n)',

the approximate perturbed energy and normalized wave function are given

by Eqs. (17) and (19) respectively . Similar iterative methods are

5 Solutions may also be obtained for the reaction operator matrix

elements tkk(n) , with A Oq . using Eq. (16). These matrix elements,

however, do not have any obvious application in the formulation for

non-degenerate states. Here it should be remembered that the t-opera-

tor is defined with respect to the state under consideration, q
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available for solving the secular equation of the linear variational

method, where the variational coefficients are treated in much the same

way as the tkq(n) (see Sec. 3 and for example ref. 6).

The connection between the approximate "effective" perturbation,

Veff(qn), and V is obtained using Eqs. (11) and (16);

n

Veff(qn) = (t(n)Cq)/ q = (V/2q) tkq~k/(Eq(n) - E(O))

k~ (25)

This function, V eff(qn) , is equivalent to the operator t(n) in

the computation of the energy and wave function of the perturbed system

(see Sec. 1); indeed tkq(n) = (Veff(q,n)) kq An approximate "effective"

perturbation is computed for a specific example, the He atom, in Sec.

4. In Sec. 3 an expression for Veff(qn) is obtained in terms of an

arbitrary basis set TWk}.

3. The Reaction Operator and the Variational Method

The reaction operator formulation is closely connected to the linear

variational method for solving the Schr~dinger equation. This property,
3

is of course, implicit in the derivation of the reaction operator.

From Eq. (22) one obtains

I [Vsk (Eq(n) - E(O)) fks] tkq(n)/(Eq(n) " Eko)) 0

k=l (26)

s=1,2,.. *,n

The matrix element of the perturbed Hamiltonian, Hsk , is given by

Hsk = (H0 + V)sk = E k ks + Vsk (27)

Hence Eq. (26) becomes

6 P. 0. L1wdin, J. Molecular Spectrosc. 10, 12 (1963).
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n

[IH k Eq(n)S 5  tk(f)/(Eq(l- O) = 0 , (28)
k=1

This set of equations has a non-trivial solution only if the deter-

minantal equation

IDk I = 0 , (29)

where

D (H (n) (o) (30
sk (Hsk Eq(n) Sks) (Eq(n) - k ) (30)

is satisfied. The factor (E (n) - E(o) common to each member of

the k-th column, may be divided out of the determinant given by Eq.

(29). Thus we obtain

L T"(E%(n) EIH sk - Eq (n) SksI 0 .(31)

j =1

Since the product factor is not zero, Eq. (31) reduces to the usual

secular equation
7

IHsk - Eq(n) 9ksl = 0 (32)

The relationship between the linear variational coefficients,

C kq(n) , and the matrix elements of the reaction operator, tkq(n)

is given by Eq. (20). This formula is valid only for a basis set
composed of orthonormal eigenfunctions of H0

Arbitrary Truncated Basis Set. Consider an orthonormal truncated

basis set, kWkII , with the single restriction that Wq = (q

Using this basis set we may write

J. 0. Hirschfelder, C. F. Curtiss and R. B. Bird, "Molecular Theory

of Gases and Liquids" (John Wiley and Sons, Inc.,New York, 1954)
p. 63.
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n

t (n) V + V I (ik> <Wkt(n) (33)
k=l (Eq n) -H o

k#q

Here, however, we may not replace H by E as was done previously

when the set { k) was used. On this account, there is no simple

theory such as that developed in Sec. 2. On the other hand it is easy

to obtain the relationship between the C kq(n) and the matrix elements

of the reaction operator.

Let us expand the normalized wave function, '1{(n) , in terms

of the basis set {Wk} '

n n

q = Nrq(n) = N bkq(n) k = OCkq(n)Wk (34)

k=l k=l

where N is a normalization constant. Using Eqso (8), (18) and (34)

we obtain

n

t(n)(pq = Vrq(n) = VZ(Ckq(n)/N)L4 (35)

k=l

Thus the general expression for the tsq(n) in terms of the Ckq(n)

becomes

n

tsq(n) = l(Ckqf(n)/N)Vsk s=l,2,ooo0,n . (36)

k=l

Using Eq. (35) one may obtain an expression for Veff(qn)

n

Vff(q,n) = (V/ (Cq) (Ckqn)/ N)W (37)

k=l

Equations (36) and (37) contain Eqs. (22) and (25) as special cases.

4. An Example, the Helium Atom8 ; Discussion.

We now consider a simple example to illustrate some of the ideas

8 A more detailed version of this work is available in the technical

report, WIS-TCI-10, Theoretical Chemistry Institute, University of
Wisconsin, 25 February 1963.
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developed in the preceding part of this paper. The truncated reaction

operator matrix elements are obtained for the (Is) 2(Is)(2s),(2s)2 iS

states of helium. Simple basis sets are used. which consist of one or

more configurational interaction wave functions, constructed from

products of uniformly scaled hydrogen Is and 2s orbitals. The approxi-

mate "effective" perturbation, Veff(q~n) , is computed for specific

examples. Finally, the results obtained for helium and the more general

results of the previous parts of this paper are discussed.

The two electron problem is very advantageous for this investiga-

tion because of simplifications resulting from the factorization of

electron spin. This factorization of spin permits the use of the

following basis functions9;

= is(1) ls(2)

92 =  (2) [1s(1) 2s(2) + is(2) 2s(l) (38)

P3 = 2s(l) 2s(2)

where

ls(i) = (t) (Z) 312exp(=Zri )

(39)

2s(i) = M4)1 I (21) (Z) 3/2(2 - Zri)exp(=Zri/2)

i = 1 or 2 , and Z is a scaling parameter which may be energy optimized.

The Hamiltonian, H J for the helium atom may be written in the

form of Eq. (2) with

= o( )V1
2 _( )V 2

2 _ Z [(1/rI) + (l/r 2A (40)

All equations and data given in this paper are in atomic units,
where the unit of length is a . the Bohr radius, and the unit of
energy is e2/a 00
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and

V (Z 2) [(1/r!) + (I/r2] + I/r1 2 (41)
((41

The eigenvalues Ek°) k = 1,2,3 are easily computed by applying Hk 10

to the functions given by Eqs. (38). The matrix elements of the pertur-

bation, V , can be computed using the tables of RoothanI0 and Barnett

and Coulson

To obtain the truncated reaction operator matrix elements for the

(Is) 2(Is)(2s),(2s) 2 1S states of helium we set q = 1,2, and 39

respectively, in Eqs. (22), (23) and (24)., and use the iterative method
12of solution outlined in Sec. 21. In the Appendix we discuss briefly

the selective nature of the iterative method of solving for the reaction

operator matrix elements. It is shown that the procedure will. converge

(for the calculations considered in this paper) to the state under con-

sideration regardless of the initial choice of t (n). InTable I (page 11) the
qq 1 e 1.3

tkq(n) are listed at several stages of approximation 0 Each approxi-
q 2

mation is computed using one or more of the configurations (is) 2(ls)(2s),
2

(2s) in the basis set. For the unscaled computations with Z = 2

the tkl(n) decrease by approximately an order of magnitude as k

takes on the values 192. and 3 respectively. Similar trends for the

tkq(n), with q/ 1, are suggested for k > q (see Table I).

However with the limited data given here it is impossible to establish

definite trends for these matrix elements. The tkq(n) for Z = 2

seems to be a relatively slowly varying function of n o Similar but

less pronounced trends in the tkq(n) are seen in the energy optimized

computations0

10 C. C. J. Roothan, J. Chem. Phys. 19, 1445 (1951).

11 M. P. Barnett and C. A. Coulson, Phil. Trans. (Series A) 243p 221

(1951).

12 The iterative method was carried out numerically using a Control

Data Corporation 1604 computer. In the energy minimization part of
the program a simple search method was employed. All data has been
rounded off.

13 The values of tkX(n) , with Z# q , are not given in this paper

(see ref0 5), but are available in Tables IV, V, and VI of ref0 8.
The physical significance and use of these matrix elements is at the
present time unclear0
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Having computed the truncated reaction operator matrix elements

one may compute approximations to the normalized perturbed wave

functions for the (is) 2 (s)(2s),(2s)2 1S states of helium using Eqso

(19), (20), and (21); these are given in Table II (page 13). For both

the unscaled and energy optimized calculations the trends in the numer-

ical values of the coefficients of the normalized perturbed wave

function, Ckq(n) , are more clearly defined than those for the tkq(n)

(compare tables I and II). The C kq(n) show a much smaller change in

magnitude upon scaling than the tkq(n) . Thus we conclude that the

Ck(n) act as a "normalized't t (n) . This effect is due to the
kq ()K
energy difference, E q(n) - E k ) 

, appearing in the definition of the

Ckq(n) given by Eq (20). This type of trend in the coefficients of

a linear variational wave function is apparent in the work of others

-- for example, the Shull and Lbwdin investigation of the ground
14

state of heliuml. With numerical experience for atomic and molecular

problems one may eventually be able to empiricize the tkq(n) orA

equivalently, the Ck(n) for helium and other systems0  Good estima-

tions of the energy could then be obtained from Eqs0 (17) and (36).

One can easily compute approximations to the energy of the

(Is) 2(1s)(2s),(2s) IS states of helium using Eq (17) and the

t qq(n) obtained by the iterative procedure of Sec. 2. These energies,

given in Table III (page 14), are not particularly good because of the

nature of the truncated basis set used0

The approximate "effective" perturbation, Veff(qnZ) , can be

computed using the data of Table I (or Table I) and Eq0 (25)(or Eq,

(37)). As an example we give Veff(l3.2) and Veff(l 3
.Z9op) where

Z is the energy optimized Z o Defining
op

g(i.a) (1 - ari)exp(ar i ) , 1=l or 2 (42)

V(Z) (Z - 2) FI/r) + (iir 2) + lr 12  (43)

14 H. Shull and P0 0. LUwdin, J. Chem. Physo 30, 617 (1959).
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we obtain

Vff (1 l3,2)/V(2) fl-(0.079382) Pg'l) + g(2,l)] .(O2l22)g(ll)g(2,l)}

(44)

Vi-(0.03090) [g(,0o.8792) + g(20o.8792'
Veff O3.O.O7583)/V(IO7583)  _ (0.00302)g(l,0o8792)g(2)0° 8792) J

The simple form of the approximations to Veff for the helium atom

given above is due to the limited truncated basis set used. The use of

better basis sets would permit accurate calculations of Veff . After

sufficient numerical and theoretical experience we hope it will be

possible to accurately empiricize Vef f  for many atomic and molecular

problems.

One of the most useful aspects of the reaction operator formula-

tion is that the operator, t , takes into account all interactions of

the system above the unperturbed state. Thus t and its matrix elements

(and of course Veff and its matrix elements) must give valuable infor-

mation concerning the physical properties of the perturbed system.
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Appendix. Convergence Properties of the Iterative Method ofSolving

for the Reaction Operator Matrix Elements,

In the computations outlined in Sec. 4., interesting convergence

properties of the iterative method for obtaining the reaction operator

matrix elements were apparent. The method converged to the t qq(n)

corresponding to the state under consideration even if the initial guess

for t qq(n) corresponded to the solution for another perturbed state.
qq 6

In the following discussion we make use of a theorem which states:

If the equation, x = f(x) subject to the condition f'(x) # 0 , is

solved by the iterative procedure, xK+I l f(xK) , then the method

will converge to a particular root A , if If,(A)I< I . if

If'(,)[> 1 , the iterative procedure will diverge from the root X
Using Eq. (22) with q = 1; Z = 2; s = 1,2, or 3; one can show

8

that for the ground state

tll(3) = V + V!2  r v 3/ (45)1 L
+ v1 2 J +2VVV2)-
+1v3  [171'3 - 2~3 '(2] -l+2 12V23V31 [f12 Y1[3 - V

where

0lj = E ° ) - H.. + tll(3) * j=2,3 o (46)

If E(°)  is added to both sides of Eq. (45) we obtain the Feenberg
1 15

perturbation series for a basis set comprised of three real ortho-

normal eigenfunctions of Ho . Equation (45) has the form t11 = f(t11 )

Using Eq. (45) one obtains:

[ 2 V2 +V2 2 +V2 21
ft(3) +VV2 + IVVV-
f'(t11(313-T12 +j ~ 13 V32 21Tl2 + *)(13)I 123

(47)

15 E. Feenberg, Phys. Rev. 74, 206 (1948).
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The roots of Eq. (45), t(J)(3) , which correspond to the j-th

perturbed state can be calculated by the following equation:

t(J)(3) = E.(3) - E(o) j=1,2,3 (48)

The valuesfor Lf'ct(J)(3))* j = 1,2,3, are given below:

If(tUl (3))I = 0. 1011

f'( (2)~ (3))l = 9. 960 (49)

(3) (3)) = 1.71 x 103

Equations (49) explain the selective nature of the iterative procedure

for the ground state calculations with Z = 2 , n = 3. Similar

explanations8 can be given for the other computations of Sec. 4.


